

Exogenous Nitric Oxide Increases Basal Leg Glucose Uptake in Humans

William J. Durham, Catherine W. Yeckel, Sharon L. Miller, Dennis C. Gore, and Robert R. Wolfe

This study addressed the role of blood flow and nitric oxide in leg glucose uptake. Seven subjects (5 men, 2 women) were studied during conditions of resting blood flow and increased blood flow, achieved by infusion of the nitric oxide (NO) donor sodium nitroprusside (SNP) into the femoral artery. Femoral arterial and venous blood samples were obtained and blood flow was determined by infusion of indocyanine green dye. SNP infusion significantly increased leg blood flow (769 ± 103 v 450 ± 65 $\text{mL} \cdot \text{min}^{-1} \cdot \text{leg}^{-1}$, $P < .001$), but did not affect arterial (4.68 ± 0.13 mmol/L control, 4.63 ± 0.09 mmol/L SNP) or venous (4.60 ± 0.14 mmol/L control, 4.54 ± 0.10 mmol/L SNP) glucose concentrations. Glucose uptake was significantly ($P < .01$) higher during SNP infusion (65 ± 6 $\mu\text{mol} \cdot \text{min}^{-1} \cdot \text{leg}^{-1}$) than during the basal period (34 ± 6 $\mu\text{mol} \cdot \text{min}^{-1} \cdot \text{leg}^{-1}$), whereas lactate release was unaffected (rest, 45 ± 11 $\mu\text{mol} \cdot \text{min}^{-1} \cdot \text{leg}^{-1}$; SNP, 42 ± 14 $\mu\text{mol} \cdot \text{min}^{-1} \cdot \text{leg}^{-1}$). We conclude that blood flow and/or NO increase basal leg glucose uptake.

© 2003 Elsevier Inc. All rights reserved.

BOTH INSULIN and exercise increase skeletal muscle glucose uptake.¹ In lean, insulin-sensitive subjects, both of these stimuli also cause vasodilation in skeletal muscle, whereas in insulin-resistant states the hemodynamic response to insulin is often impaired.² As insulin- and exercise-induced vasodilation are both thought to represent recruitment of previously underperfused capillaries,^{3,4} it is possible that capillary recruitment is necessary for normal insulin sensitivity.⁶

A related issue is the possibility that adequate production of and/or sensitivity to nitric oxide (NO) plays a necessary role in glucose uptake, as insulin-induced vasodilation is NO-dependent⁶ and mice lacking the genes for endothelial and neuronal NO synthase display marked insulin resistance.⁷ In addition, NO may play a role in contraction-induced glucose uptake.¹ This effect is at least partially blood flow independent, as inhibition of NO production during aerobic exercise reduces glucose uptake although normal blood flow is maintained.⁹ Thus, in the present study we tested the hypothesis that NO, in the absence of accompanying exercise or insulin stimulation, increases glucose uptake in humans *in vivo*.

MATERIALS AND METHODS

Subjects

Seven subjects (5 men and 2 women) consented to participate in this study after receiving a detailed written and verbal description of the study. The mean age, height, weight, and body mass index (BMI) [mean \pm SE (range)] were, respectively, 24 ± 1 years (21 to 29), 1.71 ± 3 m (162 to 181), 68 ± 4 kg (61 to 82), and 23 ± 1 kg/m^2 (20 to 27). Subjects were not taking medications. The study was approved by the Institutional Review Board of The University of Texas Medical Branch in Galveston.

From the Metabolism Unit, Shriners Hospitals for Children, and the Department of Surgery, The University of Texas Medical Branch, Galveston, TX.

Submitted March 25, 2002; accepted January 8, 2003.

Supported by Grant No. NIDDK 38010, GCRC Grant No. M01 RR-00073, and Shriners Hospital Grant No. 8490.

Address reprint requests to Robert R. Wolfe, PhD, Shriners Hospitals for Children, 815 Market St, Galveston, TX 77550.

© 2003 Elsevier Inc. All rights reserved.

0026-0495/03/5206-0010\$30.00/0

doi:10.1016/S0026-0495(03)00062-3

Experimental Design

Each subject was studied during two 3-hour periods. During one period, the endothelium-independent vasodilator sodium nitroprusside (SNP) was infused into the femoral artery of one leg to increase blood flow to that leg. During this infusion, femoral arterial and venous blood samples were obtained for measurement of the arteriovenous (A-V) glucose and lactate differences. In addition, leg blood flow was determined by indocyanine green dye (ICG) infusion. During the other 3-hour period, the same measurements were made under conditions of resting blood flow (no SNP infusion).

Procedure

Subjects reported to the General Clinical Research Center (GCRC) at The University of Texas Medical Branch in Galveston the evening prior to the study and were fasted from 10 PM until the completion of the study the next day. At approximately 7 AM, catheters were placed in the femoral artery (5F), femoral vein (5F), and a forearm vein (20-gauge polyethylene) under local anesthesia (lidocaine). After line placement, subjects rested quietly in bed for the remainder of the study. The study consisted of two 3-hour periods, the order of which was randomly assigned. During one period, SNP was infused into the femoral artery at a rate of $8 \mu\text{g}/\text{min}$ to increase leg blood flow. During the other period the subject was studied under conditions of resting leg blood flow. Heart rate and blood pressure were not affected by the local SNP infusion. Over the final 2 hours of each period, blood samples were taken from the femoral artery and the femoral vein for the determination of glucose and lactate concentrations using an automated glucose and lactate analyzer (YSI 2300 STAT, Yellow Springs, OH). In 2 subjects, these samples were taken approximately every 15 minutes during the second hour of the period, whereas in the other 5 subjects the samples were taken during the third hour of the period. There were no differences observed between the second-hour and third-hour sampling protocols. Leg blood flow during each period was measured as previously described.¹⁰ Briefly, ICG dye (0.5 mg/mL) was infused into the femoral artery at a rate of $1 \text{ mL}/\text{min}$. Blood samples were taken from the femoral vein of the leg into which the dye was infused, to measure dye dilution, and from a forearm vein, to measure recirculation of dye.

Calculations and Statistics

Leg glucose uptake and lactate release were determined by multiplying the respective A-V differences by the blood flow. Data were statistically evaluated using a 2-tailed (nondirectional), paired *t* test (Microsoft Excel 97, Redmond, WA). A *P* value less than .05 was considered statistically significant. Data are presented as means \pm SE.

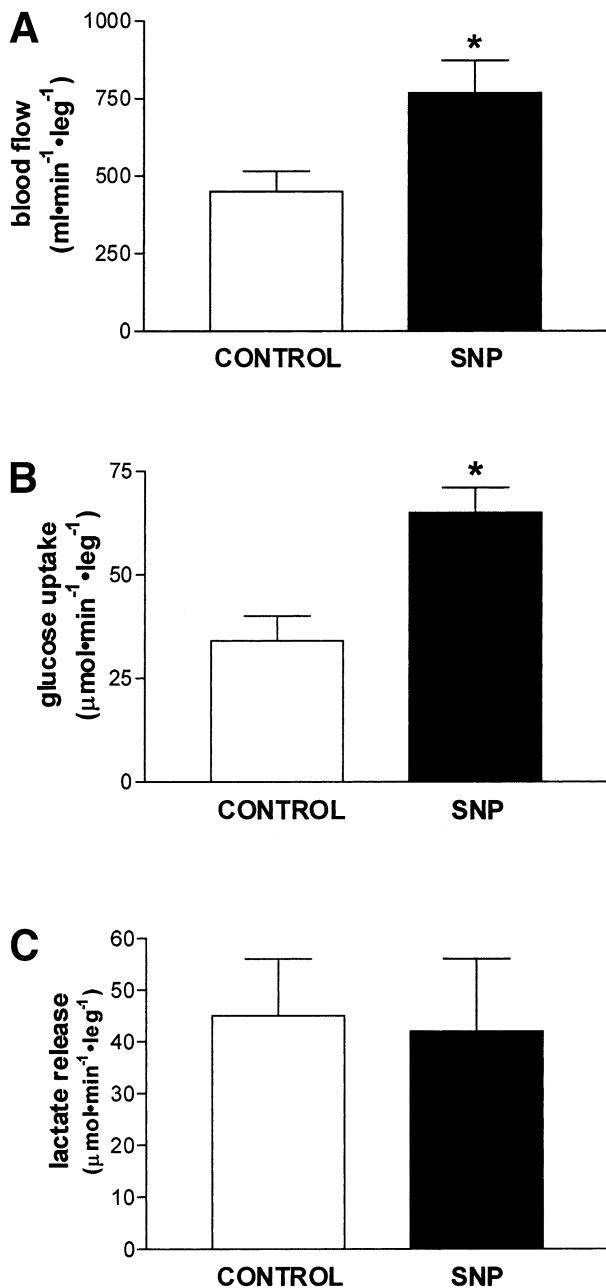


Fig 1. (A) Blood flow, (B) blood glucose uptake, and (C) leg lactate release with (SNP) and without (CONTROL) infusion of SNP. *Significantly different ($P < .005$) v control.

RESULTS

Blood flow was significantly increased by SNP infusion (450 ± 65 v $769 \pm 103 \text{ mL} \cdot \text{min}^{-1} \cdot \text{leg}^{-1}$, Fig 1A). Arterial and venous glucose and lactate concentrations were not different in the 2 periods (Table 1). The A-V glucose and lactate differences were significantly different from 0 during both the control and SNP infusion periods (Table 1). Glucose uptake was significantly elevated in response to SNP infusion ($34 \pm 6 \mu\text{mol} \cdot \text{min}^{-1} \cdot \text{leg}^{-1}$ v $65 \pm 6 \mu\text{mol} \cdot \text{min}^{-1} \cdot \text{leg}^{-1}$, Fig 1B),

whereas lactate release was unaffected (rest, $45 \pm 11 \mu\text{mol} \cdot \text{min}^{-1} \cdot \text{leg}^{-1}$; SNP, $42 \pm 14 \mu\text{mol} \cdot \text{min}^{-1} \cdot \text{leg}^{-1}$; Fig 1C).

DISCUSSION

Despite intense interest in the role of blood flow and/or NO in insulin-stimulated glucose uptake,^{6,11,17} their effects on basal glucose uptake in healthy humans *in vivo* have received little attention.^{13,15,18} In the present study, we have shown that local administration of the NO donor SNP to the leg increases glucose uptake. Moreover, this effect occurs in the absence of exercise or insulin stimulation, the 2 main physiological stimulators of glucose uptake *in vivo*.

Limb blood flow can be increased by several mechanisms, each of which has implications for the response of limb metabolism to the change in flow. If the increase in flow represents an increase in flow velocity through a fixed number of capillaries, then the A-V difference of substrates taken up or released by the limb would be expected to decrease in response to the increased flow. On the other hand, if the increase in flow represents an increase in the number of perfused capillaries, several responses are possible, depending upon whether the balance between nutritive and non-nutritive flow routes is affected. Nutritive blood flow refers to flow through vessels in which exchange of substrates can occur, whereas non-nutritive flow refers to flow through blood vessels that do not allow exchange of substrates between tissues and the blood.² If increased blood flow is achieved predominantly through increased recruitment of nutritive vessels, the A-V difference should either not change or possibly increase. On the other hand, if the increase in flow is caused by recruitment of non-nutritive vessels, the A-V difference would be expected to decrease. As SNP infusion had no effect on the A-V difference in the present study, we contend that increased nutritive flow was at least partially responsible for the increase in total limb flow.

The majority of studies addressing the role of blood flow in muscle glucose metabolism have employed vasodilator infusions during an accompanying infusion of insulin. The results of these studies have varied, with some showing an effect of vasodilation to increase insulin-stimulated glucose uptake,^{2,18} whereas others have failed to show this response.¹¹⁻¹⁷ It is worth noting that only 2 of the studies^{15,17} failing to show an increase were conducted in normal, healthy subjects, with the rest conducted in overweight,¹³ obese,¹¹ hypertensive,^{13,14} or elderly¹² subjects, populations in which insulin sensitivity is

Table 1. Femoral Arterial and Venous Glucose and Lactate Concentrations With (SNP) and Without (control) Infusion of SNP

	Control	SNP
Arterial glucose (mmol/L)	4.68 ± 0.13	4.63 ± 0.09
Venous glucose (mmol/L)	4.60 ± 0.14	4.54 ± 0.10
A-V glucose (mmol/L)	$0.08 \pm 0.01^*$	$0.09 \pm 0.01^*$
Arterial lactate (mmol/L)	0.42 ± 0.03	0.46 ± 0.06
Venous lactate (mmol/L)	0.52 ± 0.04	0.53 ± 0.06
V-A lactate (mmol/L)	$0.10 \pm 0.02^{\dagger}$	$0.07 \pm 0.02^{\dagger}$

* $P < .002$ v 0.

† $P < .01$ v 0.

‡ $P < .05$ v 0.

often reduced. The approach of concomitant vasodilator and insulin infusions is reasonable, as insulin is the major physiological stimulator of glucose uptake and, without insulin infusion, an increase in blood flow might narrow the already small A-V glucose difference. However, as discussed above, such a narrowing should only be expected if the vasodilation causes a greater relative increase in flow than in uptake capacity. That is, if the increase in flow represents an increase in flow velocity through a fixed number of capillaries, then a narrowing of the A-V glucose difference would be expected. Alternatively, if vasodilation primarily represents a recruitment of previously underperfused capillaries, as has been previously shown for both exercise- and insulin-induced vasodilation,^{3,4} the A-V difference may not change appreciably.

The present finding that the A-V glucose difference did not change does not agree with previous studies showing a narrowing of the A-V difference with increases in perfusion.^{2,11,15} However, those studies differ from the present one in that vasodilator infusion was superimposed on an existing insulin infusion. Thus, if insulin had already caused some capillary recruitment, further increases in blood flow may have reflected increased capillary recruitment, increased flow velocity through previously perfused capillaries, and/or increased non-nutritive blood flow.^{2,17}

Two previous studies have evaluated the effects of blood flow on basal glucose uptake in healthy individuals. In one study,¹⁵ the effects of bradykinin infusion on basal glucose uptake were investigated. In contrast to the present study, bradykinin infusion increased blood flow but reduced the A-V glucose difference, with the result that glucose uptake was not changed. Bradykinin, like NO, may have direct effects on skeletal muscle glucose uptake¹⁹ and has been suggested as a regulator of exercise-induced glucose uptake.^{19,20} Thus, the inability of bradykinin infusion to increase glucose uptake in the study of Nuutila et al¹⁵ suggests that bradykinin infusion alone increases non-nutritive blood flow, making any direct effects of bradykinin inconsequential. In a second study, low-dose insulin-like growth factor (IGF)-1 infusion significantly increased forearm blood flow but had no effect on forearm glucose uptake.¹⁶ As for bradykinin, one possibility is that low-dose IGF-1 infusion increases flow through non-nutritive blood vessels.

Insulin-induced vasodilation is NO-dependent.⁶ As a result, endothelium-dependent (eg, methacholine chloride) or -independent (eg, SNP) vasodilators that increase NO levels have been administered along with insulin in previous studies addressing the role of blood flow in insulin-stimulated muscle glucose uptake.^{2,11,14,17,21} Although used to modulate blood flow in those studies, it is important to note that NO has been reported to affect whole body energy expenditure²² and may play an important role in muscle glucose uptake apart from its vasodilatory actions. NO release is detectable from incubated

skeletal muscle preparations and increases with contraction.²³ Inhibition of NO production in these preparations reduces basal and contraction-induced glucose uptake.^{8,23,24} Inhibition of NO production also reduces glucose uptake, without affecting blood flow, during contractions *in vivo*.⁹ In addition, mice in which the genes for endothelial nitric oxide synthase (eNOS) and neuronal nitric oxide synthase (nNOS) have been knocked out are insulin-insensitive.⁷ However, the role of NO in insulin-stimulated glucose uptake is still unclear, as NO donors have been reported to reduce insulin-stimulated glucose uptake.²⁵ Thus, our results may also be explained by an increase in muscle NO levels during SNP infusion. Indeed, our results are consistent with recent reports suggesting that NO increases *in vitro* glucose uptake in rat skeletal muscle by a mechanism distinct from the insulin and exercise pathways.^{26,27}

Several previous studies have investigated the possibility that vasodilation and/or NO provision might increase glucose uptake in insulin-resistant states. In most^{11-14,16} of these studies, vasodilator infusion did not affect insulin-stimulated glucose uptake. However, in 2 studies in which glucose uptake was studied without coinfusion of insulin,^{13,28} infusion of the vasodilators adenosine¹³ and methacholine chloride²⁸ significantly increased both blood flow and basal glucose uptake. In the latter study,²⁸ infusion of methacholine chloride more than doubled forearm glucose uptake in hypertensive patients. In the same study, the endothelium-independent vasodilator SNP had no effect, consistent with a previous study of hypertensive patients in which SNP did not improve insulin-stimulated glucose uptake.¹⁴ Thus, at least in hypertensive patients, it appears that endothelial NO (produced in response to methacholine chloride) effectively increases glucose uptake whereas non-endothelial NO (from SNP) does not. Taken together with the results of the present study, it appears that in some insulin-resistant states muscle does not respond normally to exogenous NO and/or increases in blood flow.

In the present study, lactate release across the leg was not affected by SNP/increased blood flow. This result is consistent with a previous study in which post-exercise leg lactate release was not affected by light exercise during the recovery period.²⁹ We are not aware of any previous studies investigating the response of basal leg lactate release to NO. However, SNP has been found to increase both lactate release and glucose oxidation in incubated rat soleus muscle, without affecting glycogen synthesis.³⁰ It is difficult to compare the *in vivo* human results with the *in vitro* results from the rat; however, one tentative possibility is that SNP-induced glucose uptake does not stimulate glycolysis to the same extent in humans as in rats.

In conclusion, we have shown for the first time in humans that exogenous NO increases leg glucose uptake in the absence of exercise or insulin stimulation. The relative importances of NO-induced capillary and glucose transporter recruitment in this response deserve further investigation.

REFERENCES

1. Goodyear LJ, Kahn BB: Exercise, glucose transport, and insulin sensitivity. *Annu Rev Med* 49:235-261, 1998
2. Baron AD, Clark MG: Role of blood flow in the regulation of muscle glucose uptake. *Annu Rev Nutr* 17:487-499, 1997
3. Bonadonna RC, Saccomani MP, Del Prato S, et al: Role of tissue-specific blood flow and tissue recruitment in insulin-mediated glucose uptake of human skeletal muscle. *Circulation* 98:234-241, 1998
4. Ray CA, Dudley GA: Muscle use during dynamic knee extension: implication for perfusion and metabolism. *J Appl Physiol* 85:1194-1197, 1998

5. Baron AD, Tarshoby M, Hook G, et al: Interaction between insulin sensitivity and muscle perfusion on glucose uptake in human skeletal muscle: Evidence for capillary recruitment. *Diabetes* 49:768-774, 2000
6. Scherrer U, Radin D, Vollenweider P, et al: Nitric oxide release accounts for insulin's vascular effects in humans. *J Clin Invest* 94: 2511-2515, 1994
7. Shankar RR, Wu Y, Shen H, et al: Mice with gene disruption of both endothelial and neuronal nitric oxide synthase exhibit insulin resistance. *Diabetes* 49:684-687, 2000
8. Balon TW: Role of nitric oxide in contraction induced glucose transport. *Adv Exp Med Biol* 441:87-95, 1998
9. Bradley SJ, Kingwell BA, McConell GK: Nitric oxide synthase inhibition reduces leg glucose uptake but not blood flow during dynamic exercise in humans. *Diabetes* 48:1815-1821, 1999
10. Jorfeldt L, Wahren J: Leg blood flow during exercise in man. *Clin Sci* 41:459-473, 1971
11. Laine H, Yki-Jarvinen H, Kirvela O, et al: Insulin resistance of glucose uptake in skeletal muscle cannot be ameliorated by enhancing endothelium-dependent blood flow in obesity. *J Clin Invest* 101:1156-1162, 1998
12. Meneilly GS, Battistini B, Floras JS: Lack of effect of sodium nitroprusside on insulin-mediated blood flow and glucose disposal in the elderly. *Metabolism* 49:373-378, 2000
13. Natali A, Bonadonna R, Santoro D, et al: Insulin resistance and vasodilation in essential hypertension. Studies with adenosine. *J Clin Invest* 94:1570-1576, 1994
14. Natali A, Quinones Galvan A, Pecori N, et al: Vasodilation with sodium nitroprusside does not improve insulin action in essential hypertension. *Hypertension* 31:632-636, 1998
15. Nuutila P, Raitakari M, Laine H, et al: Role of blood flow in regulating insulin-stimulated glucose uptake in humans. *Clin Invest* 97:1741-1747, 1996
16. Pendergrass M, Fazioni E, Collins D, et al: IGF-1 increases forearm blood flow without increasing glucose uptake. *Am J Physiol* 275:E345-E350, 1998
17. Pitkanen O-P, Laine H, Kemppainen J, et al: Sodium nitroprusside increases human skeletal muscle blood flow, but does not change flow distribution or glucose uptake. *J Physiol* 521:729-737, 1999
18. Buchanan TA, Thawani H, Kades W, et al: Angiotensin II increases glucose utilization during acute hyperinsulinemia via a hemodynamic mechanism. *J Clin Invest* 92:720-726, 1993
19. Kishi K, Muromoto N, Nakaya Y, et al: Bradykinin directly triggers GLUT4 translocation via an insulin-independent pathway. *Diabetes* 47:550-558, 1998
20. Taguchi T, Kishikawa H, Motoshima H, et al: Involvement of bradykinin in acute exercise-induced increase of glucose uptake and GLUT-4 translocation in skeletal muscle: Studies in normal and diabetic humans and rats. *Metabolism* 49:920-930, 2000
21. Saltin B, Radegran G, Koskolou MD, et al: Skeletal muscle blood flow in humans and its regulation during exercise. *Acta Physiol Scand* 162:421-436, 1998
22. Shen W, Xu X, Ochoa M, et al: Role of nitric oxide in the regulation of oxygen consumption in conscious dogs. *Circ Res* 75: 1086-1095, 1994
23. Balon TW, Nadler JL: Nitric oxide release is present from incubated skeletal muscle preparations. *J Appl Physiol* 77:2519-2521, 1994
24. Balon TW, Nadler JL: Evidence that nitric oxide increases glucose transport in skeletal muscle. *J Appl Physiol* 82:359-363, 1997
25. Kapur S, Bedard S, Marcotte B, et al: Expression of nitric oxide synthase in skeletal muscle: A novel role for nitric oxide as a modulator of insulin action. *Diabetes* 46:1691-1700, 1997
26. Etgen GJ, Fryburg DA, Gibbs EM: Nitric oxide stimulates skeletal muscle glucose transport through a calcium/contraction- and phosphatidylinositol-3-kinase-independent pathway. *Diabetes* 46:1915-1919, 1997
27. Higaki Y, Hirshman MF, Fujii M, et al: Nitric oxide increases glucose uptake through a mechanism that is distinct from the insulin and contraction pathways in skeletal muscle. *Diabetes* 50:241-247, 2001
28. Sarabi ML, Lind L, Millgard J, et al: Local vasodilatation with metacholine, but not with nitroprusside, increases forearm glucose uptake. *Physiol Res* 48:291-295, 1999
29. Bangsbo J, Graham T, Johansen L, et al: Muscle lactate metabolism in recovery from intense exhaustive exercise: Impact of light exercise. *J Appl Physiol* 77:1890-1895, 1994
30. Young ME, Radda GK, Leighton B: Nitric oxide stimulates glucose transport and metabolism in rat skeletal muscle in vitro. *Biochem J* 322:223-228, 1997